Pre-analytical issues in a flow cytometry lab

Alexandra Fleva Ph.D.
Immunology - Histocompatibility Department
PAPAGEORGIOU GENERAL HOSPITAL
THESALONIKI, GREECE

It is estimated that more than 70% of clinical decisions are based on information derived from laboratory test results.

The process of blood testing, also known as the “Total Testing Process,” begins and ends with the patient. It includes the entire process from ordering the test to interpretation of the test results by the clinician.

Conflict of Interest Disclosure

In accordance with criterion 24 of document UEMS 2012/30 “Accreditation of Live Educational Events by the EACME®” we hereby declare to have submitted a Conflict of Interest Disclosure Form to ESCCA.

This COI Disclosure Form can be viewed at the ESCCA 2019 Conference website www.escca.eu/norway2019 - Programme section / Accreditation page

Total Testing Process

Can be subdivided into three stages:

➢ Pre-analytical: test request, patient and specimen identification, specimen collection, transport, accessioning and processing

➢ Analytical: specimen testing

➢ Post-analytical: reporting test results, interpretation, follow up, storage, retesting if needed.
Additionally

➢ The term "pre-pre-analytical phase" has been used for the initial part of the pre-analytical phase, focused on test selection and identification of test needed

➢ The term "post-post-analytical phase" has been used for the interpretation of results by the clinician.

➢ A Standard is the minimum requirement for a procedure, method, staffing resource or laboratory facility that is required

➢ A Guideline is a consensus recommendation for best medical laboratory practice for a procedure, method, staffing resource or facility

➢ A Commentary may be provided to give clarification to the Guidelines

IVD

A medical device test either it is a reagent, calibrator, control material, kit, Specimen receptacle, software, instrument, apparatus, equipment or system, whether used alone or in combination with other diagnostic goods for in vitro examination of Specimens derived from the human body.

For the purpose of giving information about a physiological or pathological state, a congenital abnormality or to determine safety and compatibility with a potential recipient, or to monitor therapeutic measures.

Pre-analytical

➢ patient and sample identification
➢ sample collection
➢ transport of sample
➢ accessioning and processing of sample
patient and sample identification

➢ collected samples should have the patient's name and two identifiers (e.g., date of birth, medical record number, test/accession number), including collection date and sample type.

➢ Secondary sample/assay tubes should have patient name and at least one identifier.

➢ Barcode alone is not acceptable.

➢ A protocol for return unlabeled/mismatched specimens according to collection and criteria for rejection should be followed as described in your laboratory department manual.

specimen collection/transport/process

Appropriate anticoagulant and storage according to sample type and disease investigation

Peripheral Blood
Collect into tube with appropriate anticoagulant (K$_2$EDTA: heparin).
Keep at ambient temperature.
Process for analysis within 6-30 hr of collection.

Bone marrow
Problems with fat, bone fragments, erythrocytes.

CSF
Number and viability of cells depend on transportation time.

FNA
Body Fluids
Immunophenotyping depends on the cellularity of the specimen.
No anticoagulant needed.
Filter.
Process within 6-8 hr of collection.

accessioning and processing

Specimen Viability

Non-viable cells are a significant source of false positive staining. Viability testing is recommended for samples more than 24 hours after collection or if there is obvious deterioration of the sample.

Dead/live staining
Viability can be tested using 7AAD or tryptophan blue.
7-AAD: minimal spectral overlap (excitation 488, emission 655) can be combined with PE.

DNA binding - PI
Propidium iodide is not recommended for immunophenotyping due to instrument contamination and carryover.

accessioning and processing

➢ Laboratory (room)

➢ Instrument

➢ Panels (reagent - methods)
Laboratory (room)

- Size
- Temperature
- Humidity
- Noise from other instruments
- Placement of flow cytometer

Flow cytometer

Daily control of the instrument performance is mandatory

Flow cytometer maintenance (e.g. QC,)

<table>
<thead>
<tr>
<th></th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Bimonthly</th>
<th>When Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air filters</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Container</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Sample head and</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Sample probe</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Sampling system</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Sheath fluid</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>Vacuum trap</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Panels

(methods-reagent)

Selection of CD marker
- Choose antigens for identifying subsets
- Design staining combinations
- Keep in mind antigen density and expression pattern

Questions
Based on the flow cytometer that you have (lasers)
What fluorochromes can you detect
Match high Quantum Efficiency fluorochromes with low antigen density
Keep in mind that same monoclonal antibody conjugated to FITC, PE, Cy5PE, APC, Cy7APC can show different distributions

Panels

(methods-reagent)

Panels should be evaluated and validated in multicenter studies
Normal references including different tissues and age-groups are needed
Sample preparation procedures have to be adapted to the clinical question
Panels should be evaluated and validated in multicenter studies

➢ Euroflow (www.euroflow.org)
➢ IFCC (International Federation of Clinical Chemistry and Laboratory Medicine)
➢ CLSI (Clinical Laboratory Standards Institute)
➢ ICCS (International Clinical Cytometry Society)
➢ ESCCA (European Society for Clinical Cell Analysis, www.escca.eu)
➢ OMIP
➢ ISAC: International Society of Advanced Cytometry

Normal references including different tissues and age-groups are needed

➢ What is normal
➢ What is pathological
➢ Children adults old

Sample preparation procedures

➢ Proper sample
➢ Calibrated pipettes
➢ Pipetting and mixing techniques
➢ Sample processing (beads, gradient, whole blood)
➢ Incubation time and place
➢ Wash conditions (free Moabs and plasma contains Ig)
➢ Lysing and permeabilization reagents

Cytometry

Sample Preparation for Flow Cytometry Benefits From Some Lateral Thinking

Andrew Filby
Summary of pre-analytical issues