

STANDARIZED PANEL AND PROCEDURES FOR PEDIATRIC SOLID TUMORS DIAGNOSTIC BY FLOW CYTOMETRY

Elaine Sobral da Costa UFRJ-Rio de Janeiro/Brazil

Pediatric cancer is the 1st cause of death by diseases in children >1 year-old in developed countries

Childhood and Adolescent Cancer Statistics, 2014

Ward, PhD¹; Carol DeSantis, MPH²; Anthony Robbins, MD, PhD³; Betsy Kohler, MPH⁴; Ahmedin Jemal, DVM,

In 2014, the American Cancer Society reported:

- 15780 new cases of pediatric cancer in USA
- 1960 deaths
- Annual incidence of 18.6 per 1 million (since birth to 19 years)

Pediatric Cancer Distribution

CA CANCER J CLIN 2014;64:83-103

Children (Ages 0-14)

Acute lymphocytic leukemia 2,670 (26%)

> Brain and CNS 2,240 (21%)

Neuroblastoma* 710 (7%)

Non-Hodgkin lymphoma 620 (6%)

> Wilms tumor 510 (5%)

Acute myeloid leukemia 500 (5%)

> Bone tumors[†] 450 (4%)

Hodgkin lymphoma 380 (4%)

Rhabdomyosarcoma 340 (3%)

> Retinoblastoma 280 (3%)

> > All sites 10,450

Adolescents (Ages 15-19)

Hodgkin lymphoma 800 (15%)

Thyroid carcinoma 570 (11%)

Brain and CNS 540 (10%)

Testicular germ cell tumors 430 (8%)

Non-Hodgkin lymphoma 420 (8%)

Acute lymphocytic leukemia 410 (8%)

> Bone tumors[†] 370 (7%)

> > Melanoma 310 (6%)

Acute myeloid leukemia 230 (4%)

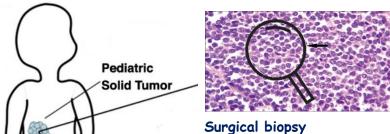
Ovarian germ cell tumors 110 (2%)

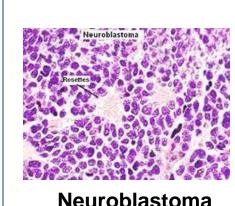
> All sites 5,330

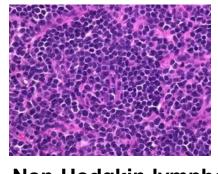
FIGURE 1. Estimated New Cases of Childhood and Adolescent Cancers, United States, 2014.

Estimates are for malignant cancers only and are rounded to the nearest 10. In addition, 730 children and 630 adolescents will be diagnosed with benign and borderline brain tumors in 2014. *Includes ganglioneuroblastoma. *Bone tumors include osteosarcoma and Ewing sarcoma.

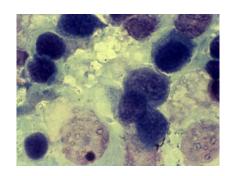
Clinical suspicion and conventional diagnosis in pediatric solid tumors


Detailed clinical history AND complete physical examination

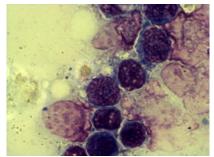

Laboratory studies


Imaging studies

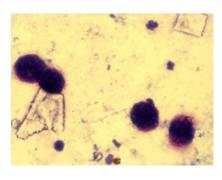
Conventional diagnosis in pediatric solid tumors



Neuroblastoma

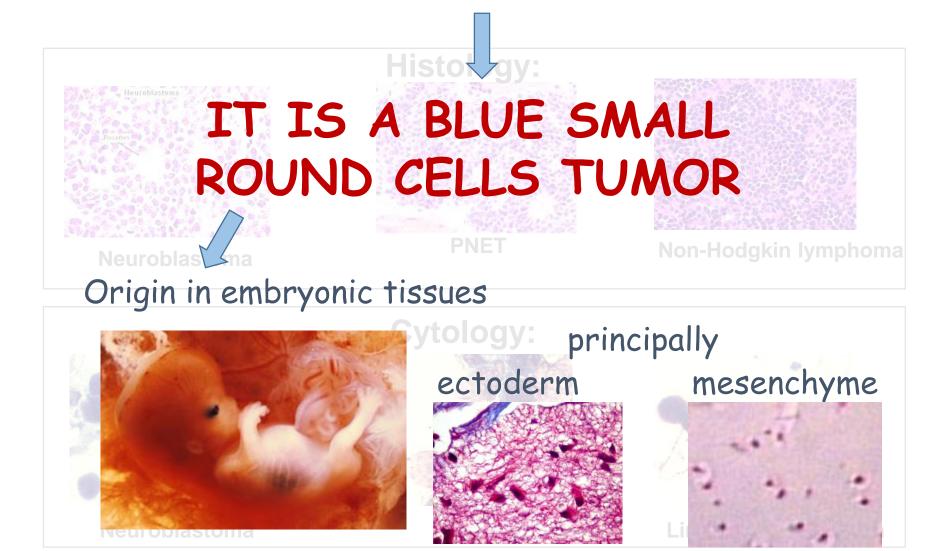

Primitive Neuroectodermic tumor - PNET

Non-Hodgkin lymphoma



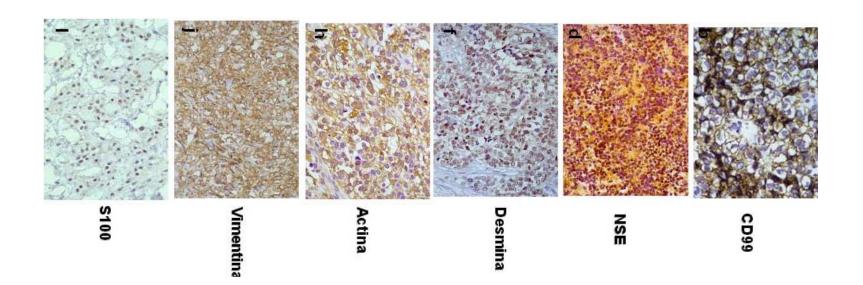
Neuroblastoma

Cytology:



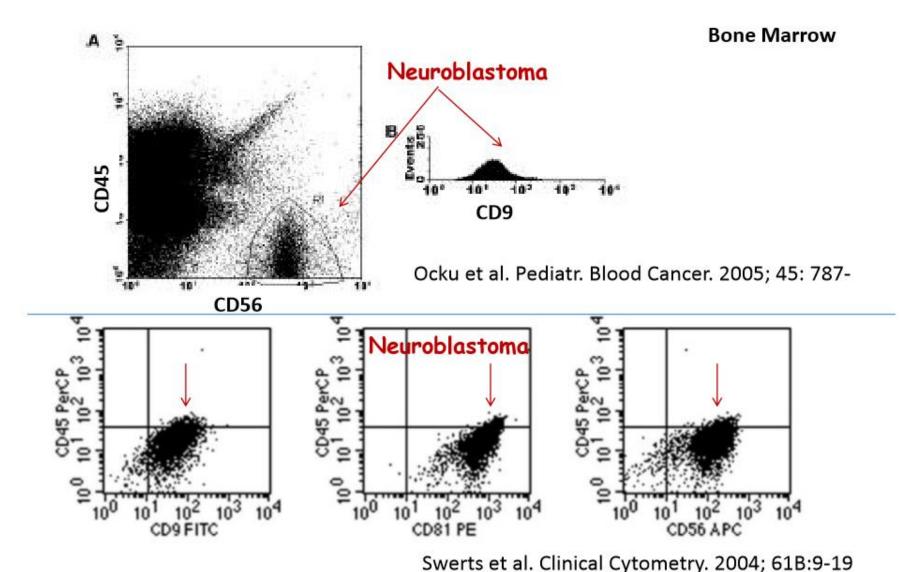
PNET

Non-Hodgkin lymphoma


Histopathologic description of these cancer subtypes:

Clinical suspicion and conventional diagnosis in pediatric solid tumors

- Tumors from embryonic origin
- Fast growth
- · Clinical manifestations simulate benign conditions of children
- Diagnostic is mostly based in histopathology/immunohistochemistry



Histopathology plus immunohistochemistry vs. Flow Cytometry

	Histopathology and Immunohistochemistry	Flow Cytometry
Time to diagnostic	8 - 15 days	Few hours
Tumor organization	Tissue organization	Need tumor disaggregation
Sample storage	Tissue conservation	Need cell viability
Markers	One each study	Several per study (≥8)
Less represented subpopulations	No identified	Identified
Antibody costs	Higher	Lower
Diagnostic Criteria	Established	On going
Experience	Higher	Lower, but <mark>automated analysis</mark> is possible

First studies using Flow Cytometry in pediatric solid tumors

PUBLISH

ABOUT

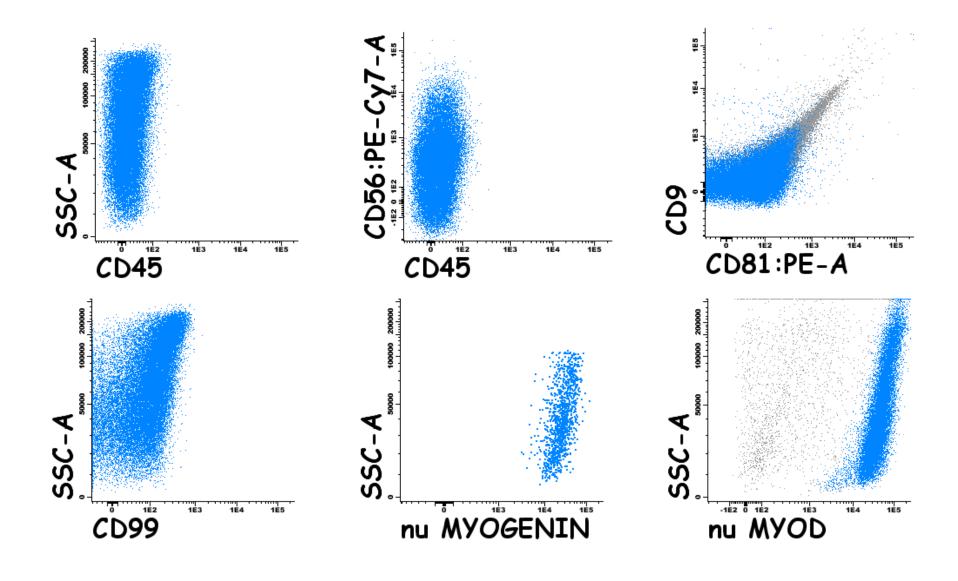
BROWSE

SEARCH

Q

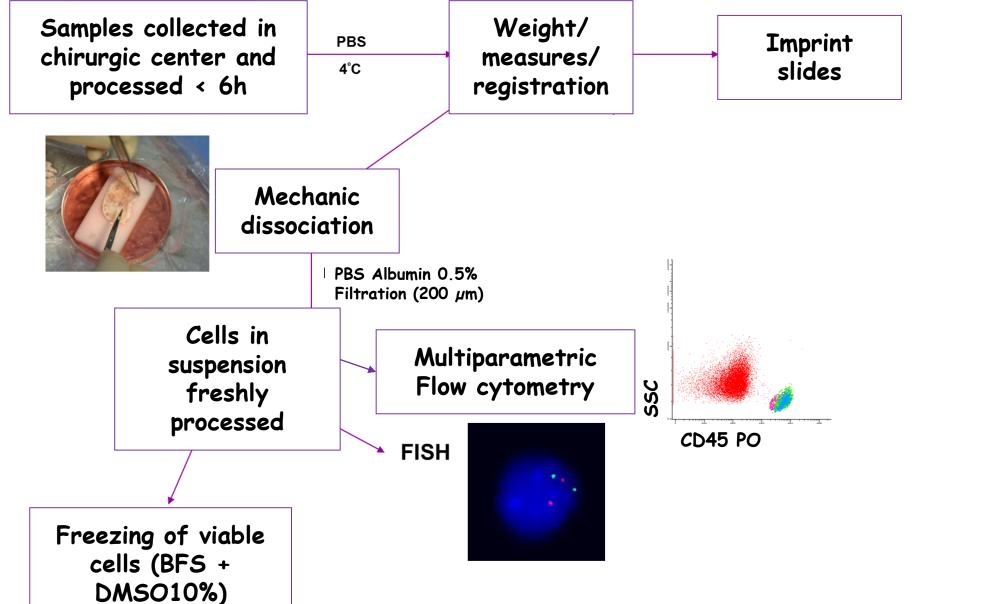
advanced search

RESEARCH ARTICLE


Contribution of Multiparameter Flow Cytometry Immunophenotyping to the Diagnostic Screening and Classification of Pediatric Cancer

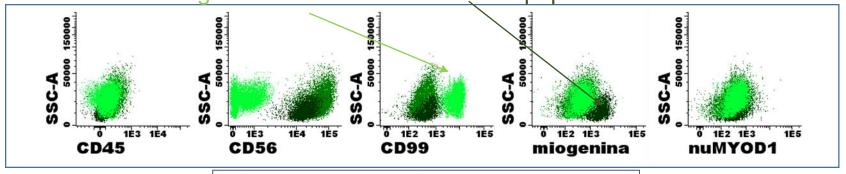
Cristiane S. Ferreira-Facio, Cristiane Milito, Vitor Botafogo, Marcela Fontana, Leandro S. Thiago, Elen Oliveira, Ariovaldo S. da Rocha-Filho, Fernando Werneck, Danielle N. Forny, Samuel Dekermacher, Ana Paula de Azambuja, Sima Esther Ferman, Paulo Antônio Silvestre de Faria, [...], Elaine S. Costa [view all]

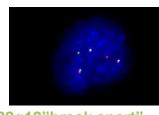
Published: March 5, 2013 • https://doi.org/10.1371/journal.pone.0055534

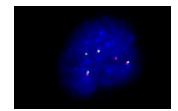

53 17 Save Citation 10,765 View Share

Immunophenotypic profile of a Rabdomyossarcoma

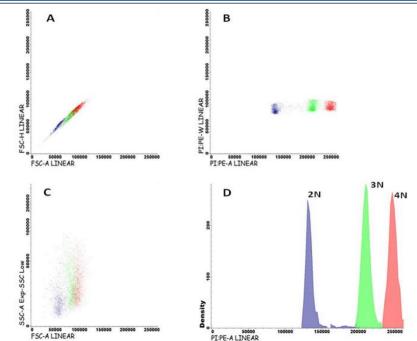
Solid tumor processing

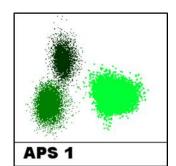



Integrated analysis

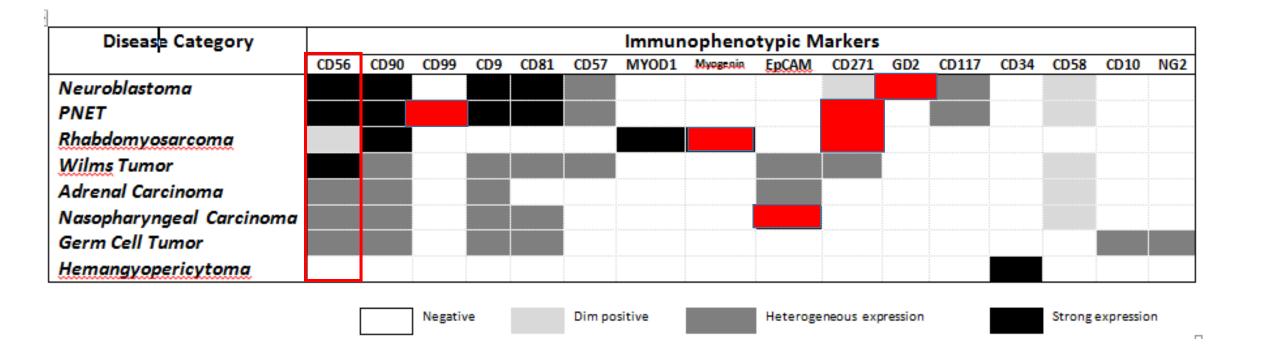

MFC, cell cycle and FISH

Ewing sarcoma but with a RMŞ subpopulation





22q12"break apart"


Pax3 t(2;13)

OUR FIRST PUBLISHED RESULTS

The first phase of pediatric solid tumors project was dedicated to

Development of an 8-color/12 markers combination single tube for

the diagnostic screening of tumor cells

& immune response monitoring

in samples with suspicion of Pediatric Tumors

PHASE 1 - SCREENING

PHASE 1. SCREENING TUBES (103 samples)

FITC	PerCPCy5	PE	PE-cy7	APC	APC-C750
CD8+smIgA	CD4+CD19	CD56+smIgk	CD56	CD3	CD45
UCHT-4+policlonal	SK3+HIB19	C5.9+policlonal	Clone 11A9		HI30

LymphoclonalTM (adapted with CD56 and CD45)

Pacific Blue	OC515	FITC	PerCPCy5	PE	PE-cy7	APC	APC-C750
cyCD3	CD45	cyMPO	CD34	cyCD79a	CD19	CD7	smCD3
UCHT-1	GA90	2C7	581	HM57	19-1	HULY-M2	UCHT-1

ALOTTM

Identification of hematopoietic/reactive normal cells

Neutrophils: CD45+/MPO+

Monocytes: CD45+/MPO+/CD4+

T lymphocytes: CD45+/smCD3+/cyCD3+/CD7+

B lymphocytes: CD45+/CD19+/cyCD79a+/ CD20+

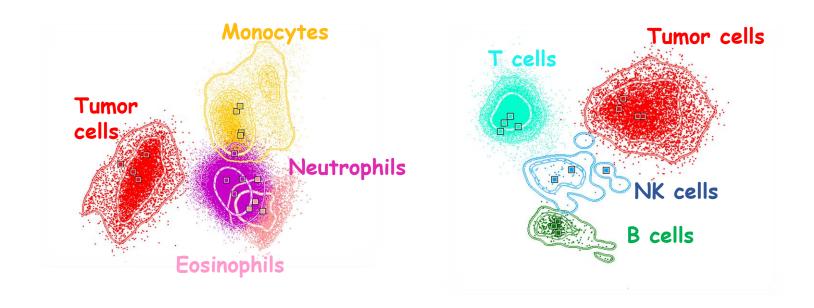
NK cells: CD45+/CD7+/CD56+

Identification of non-hematopoietic neoplastic cells

CD45- /CD56+ or CD45- /CD56++ non-hematopoietic pediatric solid tumor

PHASE 1 - SCREENING

PHASE 1. SCREENING TUBES (103 samples)


Identification of normal vs neoplastic cells (sequential steps):

Pacific Blue	OC515	FITC	PerCPCy5	PE	PE-cy7	APC	APC-C750
CD20+CD4	CD45	CD8+smIgA	CD5	CD56+smI gk	CD19+TCRŏ	smCD3	CD38
2H7+RPA-T4	GA90	UCHT-4+policlonal	UCHT-2	C5.9+policlonal	19-1+TCR-1	UCHT-1	LD38

LSTTM

Pacific Blue	OC515	FITC	PerCPCy5	PE	PE-cy7	APC	APC-C750
cyCD3	CD45	суМРО	CD34	cyCD79a	CD19	CD7	smCD3
UCHT-1	GA90	2C7	581	HM57	19-1	HULY-M2	UCHT-1

ALOTTM

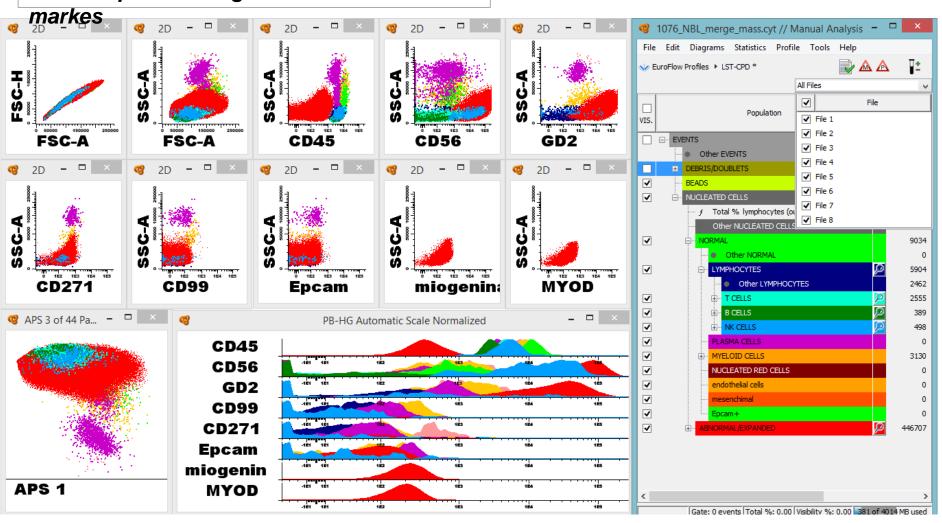
PHASE 2 CHARACTERIZATION

PHASE 1. Characterization panel of pediatric solid tumor (91 samples)

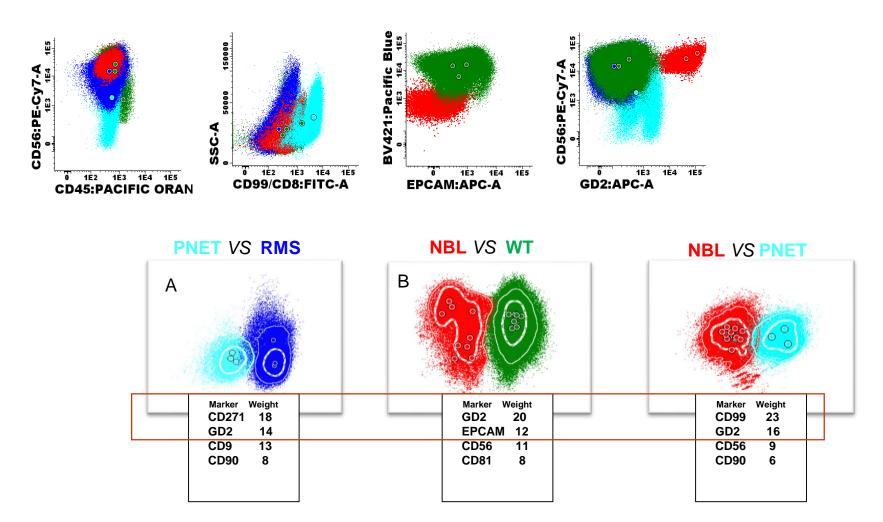
PO	FITC	PE	PERCP Cy5.5	PE Cy7	APC	APC-H7
CD45	CD57	CD90	CD34	CD56	Epcam	
HI30	HNK-1	5.00E+10	8 <i>G</i> 12	N901/NKH1	EBA-1	
Invitrogen	BD Biosciences	BD Biosciences	BD Biosciences	Beckman Coulter	BD Biosciences	
CD45	CD99	CD81	CD9	CD56	CD117	
HI30	TÜ12	JS-81	M-L13	N901/NKH1	104D2	
Invitrogen	BD Biosciences	BD Biosciences	BD Biosciences	Beckman Coulter	BD Biosciences	
CD45	CD58	CD38		CD56	CD10	
HI30	1 <i>C</i> 3	HB-7		N901/NKH1	HI10A	
Invitrogen	BDBioscience	BD Biosciences		Beckman Coulter	BD Biosciences	
CD45		CD271		CD56		
HI30		C40-1457		N901/NKH1		
Invitrogen		BD Biosciences		Beckman Coulter		
	and 4 single t	ubes with the t	following antibo	odies + rabbit (anti-IgG FITC	
	NuMYOD	_{Nu} Myogenin	GD2	_{Cv} Desmina		
	5.8°	F5D	14.G2a	RD301		
	BD Biosciences	BD Biosciences	BDBiosciences	BD Biosciences		

PHASE 2 CHARACTERIZATION

PHASE 2. Characterization panel of pediatric solid tumor (53 samples)

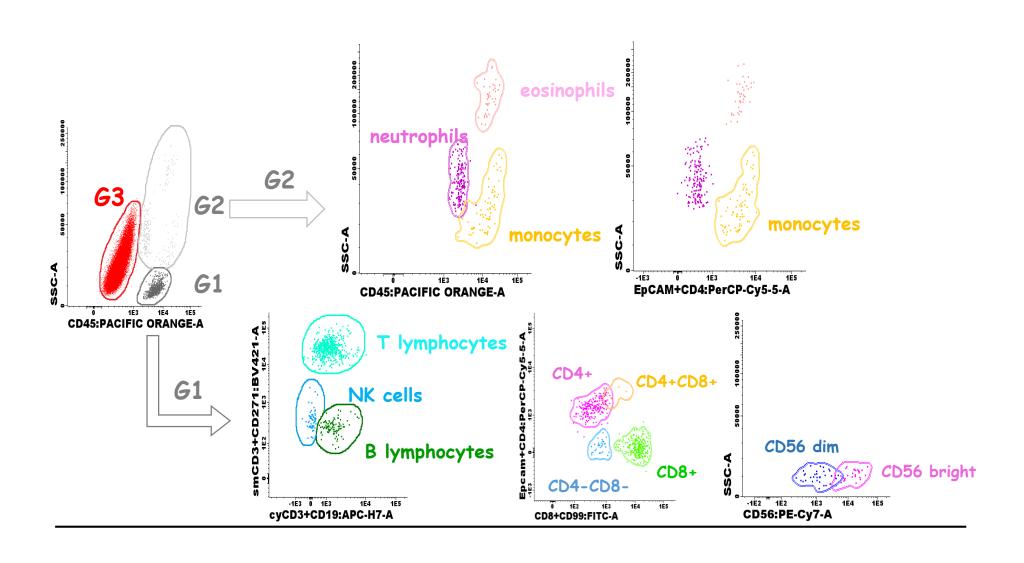

				PERCP			
PO	BV421	FITC	PE	<i>C</i> y5.5	PE Cy7	APC	APC-H7
CD45		CD99	CD71	CD9	CD56	GD2	CD81
HI30		HNK1	C401457	M-L13	N901	14.2Ga	JS-81
CD45		CD58	CD90	CD34	CD56	CD90	CD38
HI30		1 <i>C</i> 3	Thy1	L17F12	N901	Thy1	HB7
CD45	CD271	CD44	CD99	CD9	CD56	Epcam	
HI30	C401457	L178	JS-81	M-L13	N901	EBA-1	
CD45		nuMYOD	nuMyogenin	Epcam	CD56	CD10	
HI30		5.8°	F5D	EBA-1	N901	HI10A	

File merge and calculate data analysis



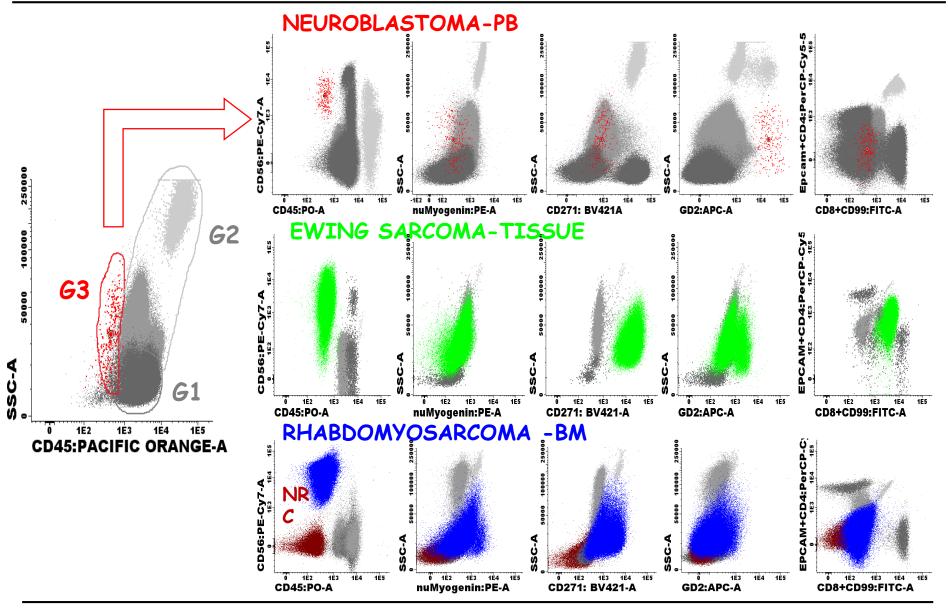
One sample file merged with a total of 45

STUDY DESIGN: CLASSIFICATION MARKERS


8-COLOR STOT tube

BV421	РО	FITC	PE	PERCP Cy5.5	PE Cy7	APC	APC-H7
cyCD3+CD271	CD45	CD99+CD8	nuMyogenin	Epcam+CD4	CD56	GD2	smCD3+CD19
UCHT1+C40-1457	HI30	Tü12+UCH-T4	F5D	SK3+EBA-1	N901	14.G2a	SK7+SJ25C1
BDBiosciences	Invitrogen	BDBiosciences	BDBiosciences	cytognos/ BD Biosciences	BeckmanCoulter	BDBiosciences	BDBiosciences+ BeckmanCoulter

an 8-color/12 markers combination single tube for the diagnostic screening of tumor cells


& immune response monitoring in samples with suspicion of Pediatric Tumors

STOT: Gating Strategy Analysis

STOT: Gating Strategy Analysis

NRC: nucleated red cells; BM: bone marrow; PB: peripheral blood

STOT markers in most frequent non hematopoietic tumors

Tumor	GD2	CD99	Miogenin	EpCAM	CD271	CD56	CD45
Neuroblastoma tumors	POS	NEG	NEG	NEG	NEG	POS	NEG
Extraosseus Ewing Sarcoma (PNET)	LO	POS	NEG	NEG	POS	POS	NEG
Rhabdomyossarcoma	NEG	NEG	POS	NEG	HI POS	POS	NEG
Osteosarcoma	NEG	NEG	NEG	NEG	HI POS	POS	NEG
Wilms Tumor	NEG	NEG	NEG	POS	HI POS	POS	NEG
Clear cell sarcoma	POS	NEG	NEG	POS	HI POS	POS	NEG
Germ cells tumor	NEG	NEG	NEG	NEG	Variable	Variable	NEG
Nasopharyngeal carcinoma	NEG	NEG	NEG	POS	NEG	POS	NEG

CONCORDANCE ANALYSIS HISTOPATHOLOGY VS CYTOMETRY

A total of 296/350 samples (84.5%) were evaluated (Kappa coefficient) The observed agreement was 93,9% (278/296 samples)

HISTOPATHOLOGY CYTOMETRY	DISEASE FREE	REACTIVE	WHO CLASSIFICATION	NON-HEMATOPOIETIC	NO DIAGNOSIS
disease free	77	0	2	2 0	0
reactive	0	57			0
who classification	0	0	122	22	16*
no diagnosis	0	0	/ 0) 0	0

Neuroblastoma, Rhabdomyosarcoma, Wilms Tumors, Ewing Sarcoma, non Hodgkin Lymphoma

CONCORDANCE ANALYSIS HISTOPATHOLOGY VS CYTOMETRY

A total of 296/350 samples (84.5%) were evaluated (Kappa coefficient) The observed agreement was 93,9% (278/296 samples)

HISTOPATHOLOGY CYTOMETRY	DISEASE FREE	REACTIVE	WHO CLASSIFICATION	NON-HEMATOPOIETIC	NO DIAGNOSIS
disease free	77	0	2	0	0
reactive	0	57		0	0
who classification	0	0	122	22	16*
no diagnosis	0	0	0	0	0

Rare pediatric solid tumors, Germ cells tumors, Low cellularity samples

CONCORDANCE ANALYSIS HISTOPATHOLOGY VS CYTOMETRY

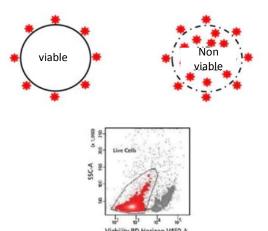
A total of 296/350 samples (84.5%) were evaluated (Kappa coefficient) The observed agreement was 93,9% (278/296 samples)

HISTOPATHOLOGY CYTOMETRY	DISEASE FREE	REACTIVE	WHO CLASSIFICATION	NON-HEMATOPOIETIC	NO DIAGNOSIS
disease free	77	0	2	0	0
reactive	0	57		0	0
who classification	0	0	122	22	16*
no diagnosis	0	0	0	0	0

Half of the samples infiltrated by Hodgkin Lymphoma Low cellularity/ low viability samples

Next Steps: Viability dyes for pediatric solid tumors

<u>Aim:</u> Test of viability dyes in order to a better discrimination between viable and nonviable cells


Fixable Viability Stain 780

Product Information

Material Number:

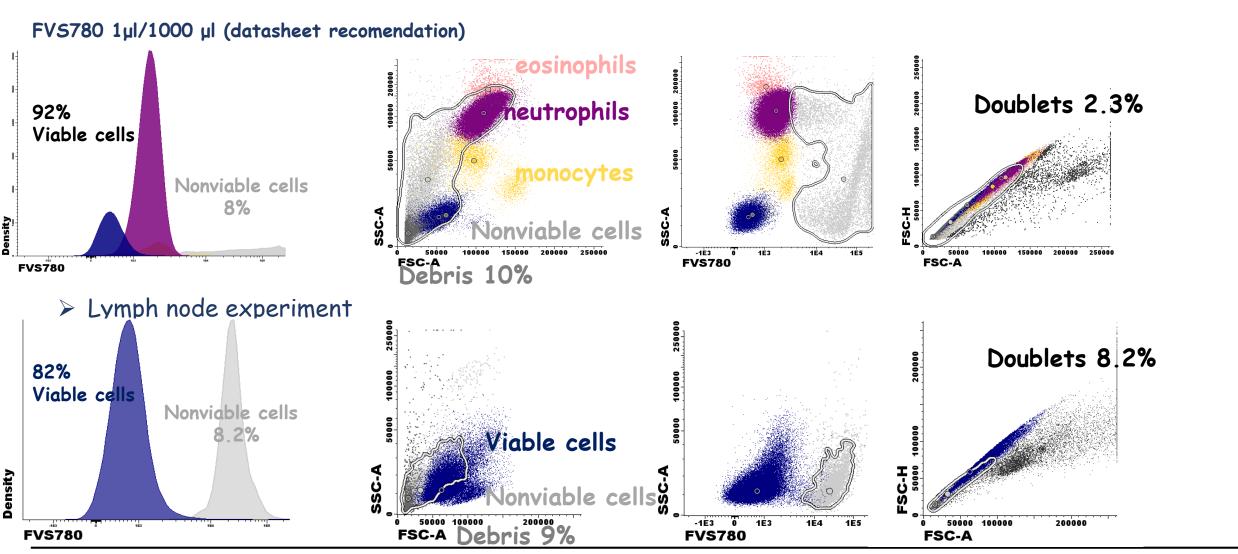
Size:

565388 200 μg

https://www.bdbiosciences.com/

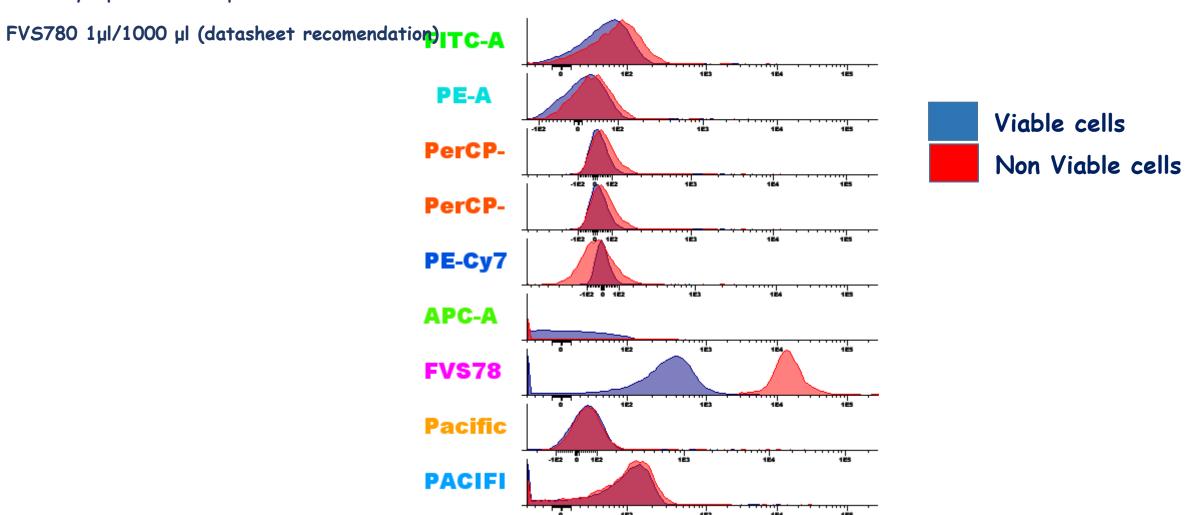
8-COLOR STOT tube

BV421	РО	FITC	PE	PERCP Cy5.5	PE Cy7	APC	АРС-Н7
cyCD3+CD271	CD45	CD99+CD8	nuMyogenin	Epcam+CD4	CD56	GD2	smCD3+CD19
UCHT1+C40-1457	HI30	Tü12+UCH-T4	F5D	SK3+EBA-1	N901	14.G2a	+FVS780
BDBiosciences	Invitrogen	BDBiosciences	BDBiosciences	cytognos/ BD Biosciences	BeckmanCoulter	BDBiosciences	BDBiosciences+ BeckmanCoulter

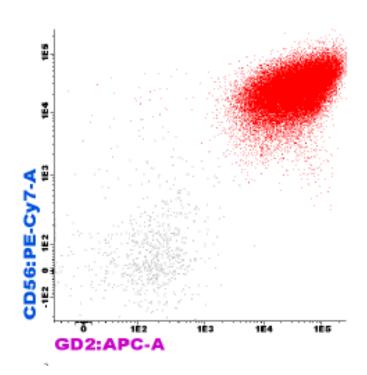

an 8-color/12 markers combination single tube for the diagnostic screening of tumor cells

& immune response monitoring in samples with suspicion of Pediatric Tumors

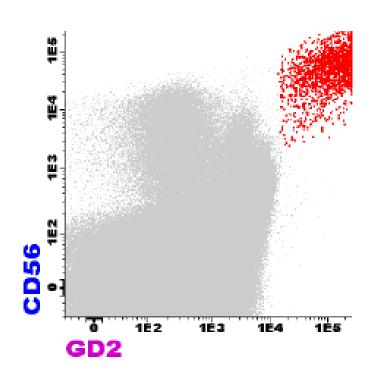
Next Steps: Viability dye for pediatric solid tumors


> Peripheral blood experiment

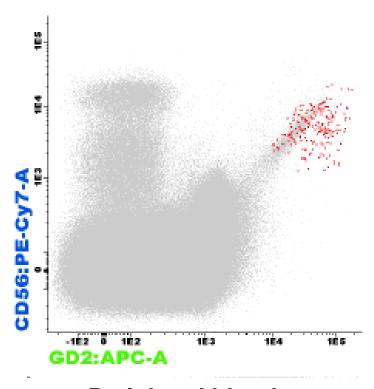
Next Steps: Viability dyes for pediatric solid tumors



> Lymph node experiment

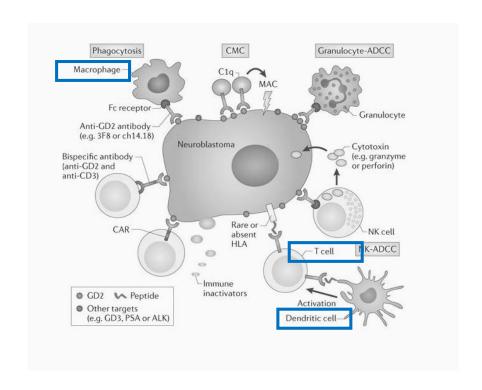


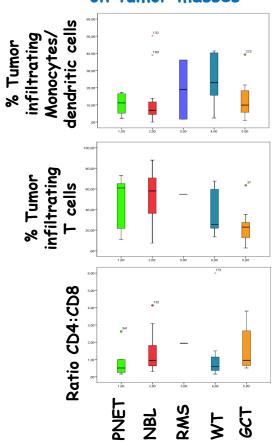
STOT-APPLICABILITY - CTC AND MTC DETECTION


Neuroblastoma

Tumor mass: 98.46% of tumor cells 200.000 Events

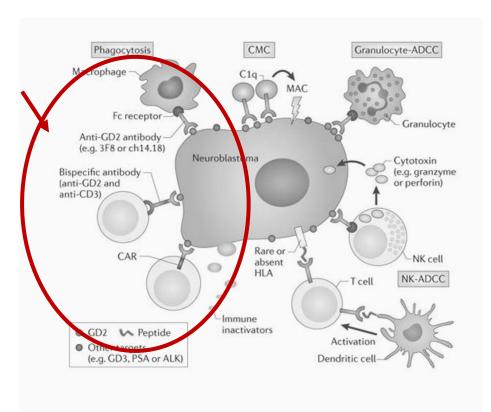
Bone marrow 0,04% of tumor cells 5.000.000 Events


Peripheral blood 0,01% of tumor cells 2.000.000 Events

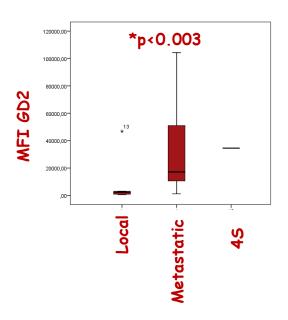

STOT-APPLICABILITY

Immune monitoring

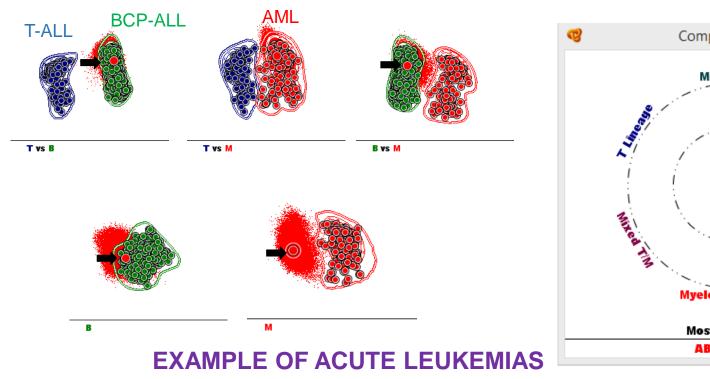
Characterization of immune response on tumor masses

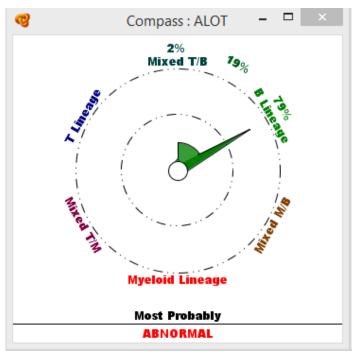


STOT-APPLICABILITY



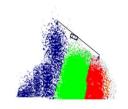
- Orientation of immunotherapies
- Potential prognostic evaluation




Heczey et al. Mol Ther, 2017 Federico et al. Clin Cancer Res, 2017 Le et al. Frontiers Immunol, 2017

Quantification of protein expression (GD2) on tumor cells

NEXT STEPS: TO BUILD A DATABASIS THAT ALLOW A AUTOMATED ANALISIS AND A COMPASS FOR DIAGNOSTIC ORIENTATION



Thank you! Obrigado!

elainesc.ufrj@gmail.com cito.ufrj@gmail.com

