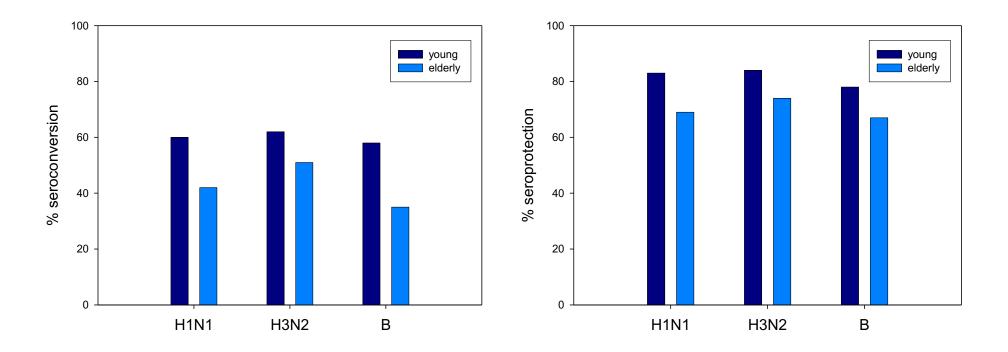


Vaccines for older adults: Challenges and Developments Univ.-Prof. Dr. Birgit Weinberger

Gegründet im Jahr 1669, ist die Universität Innsbruck heute mit mehr als 28.000 Studierenden und über 4.500 Mitarbeitenden die größte und wichtigste Forschungs- und Bildungseinrichtung in Westösterreich. Alle weiteren Informationen finden Sie im Internet unter: www.uibk.ac.at.

Incidence and severity of infections

age


data from: Thompson et al., *JAMA*, 2004

Palmer et al. J R Soc Interface, 2021

Birgit Weinberger

Influenza

meta-analysis of 31 studies (1986-2002)

data from: Goodwin et al., Vaccine, 2006

Vaccine recommendations for influenza

	2018/2019	2019/2020	2020/2021	2021/2022	2022/2023
A/H1N1	Michigan/45/2015	Brisbane/02/2018	Guangdong- Maonan/SWL153 6/2019	A/Victoria/2570/ 2019	A/Victoria/2570/ 2019
A/H3N2	Singapore/INFIM H-16-0019/2016	Kansas/14/2017	Hong Kong/2671/2019	Cambodia/e08263 60/2020	A/Darwin/9/2021
В	Colorado/06/2017	Colorado/06/2017	B/Washington/02/ 2019	B/Washington/02/ 2019	B/Austria/1359417 /2021
В	Phuket/3073/2013	Phuket/3073/2013	Phuket/3073/2013	Phuket/3073/2013	Phuket/3073/2013

quadrivalent vaccines available:

- standard
- high-dose
- adjuvanted

 \rightarrow many countries recommend the use of high-dose and/or adjuvanted vaccine for older adults

60µg HA per strain instead of 15µg

registered in the US since 2010/2011

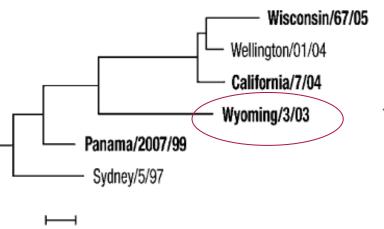
- \rightarrow higher antibody titers, higher seroconversion rate
- \rightarrow increased clinical efficacy

Variable	Laboratory-Confirmed Influenza							
	IIV3-HD (N=15,990)	IIV3-SD (N=15,993)	Relative Efficacy (95% CI)					
	no.	(%)	%					
Protocol-defined influenza-like illness	228 (1.4)	301 (1.9)	24.2 (9.7 to 36.5)‡					

randomized clinical trial: Fluzone High-Dose vs Fluzone

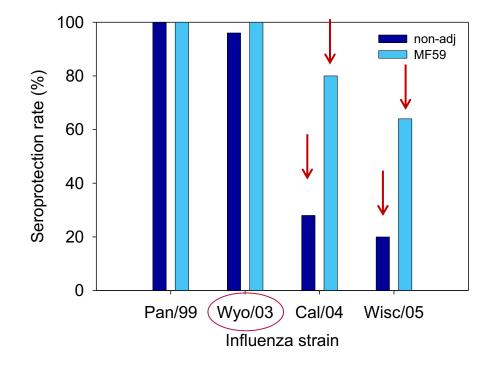
→ now available as quadrivalent vaccine recently approved in the US and Europe

 \rightarrow immunogenicity identical to trivalent formulation


DiazGranados et al., *NEJM, 2014* Chang et al., *Vaccine, 2019*

Adjuvanted vaccine

MF59: oil-in-water emulsion, squalene-based

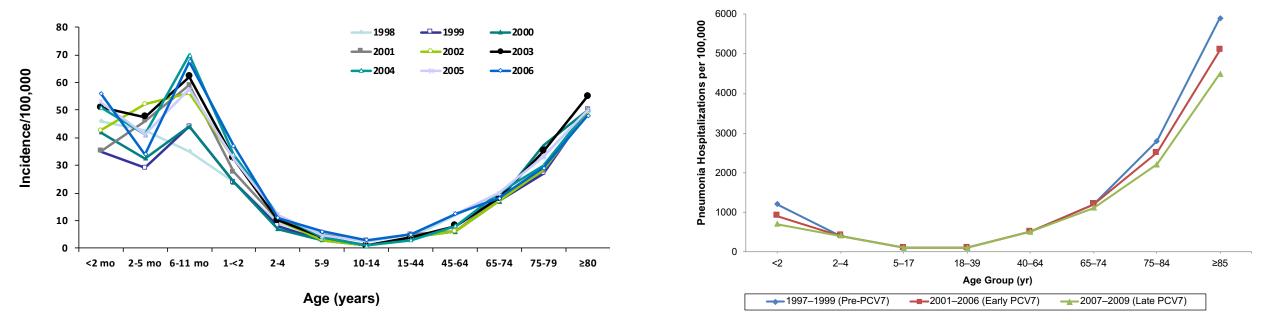

 \rightarrow licensed in Europe for older adults since 1997 (trivalent)

(A)

0.005

antibodies against heterologous virus strains

data from Ansaldi et al., Vaccine, 2008


Streptococcus pneumoniae

Invasive pneumococcal disease (IPD)

Pneumococcal pneumonia

Pneumonia Hospitalizations per 100,000

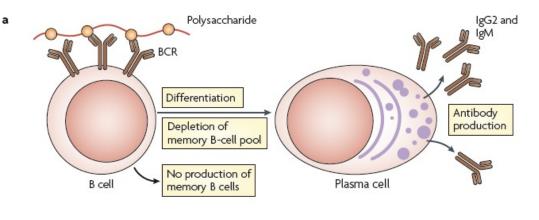
Incidence of IPD per 100,000 Population, England and Wales, 1998-2006

Vaccines need to prevent IPD at the extremes of age and pneumonia in the elderly

Adapted from: Kaye P et al. Poster presented at: ESPID Brussels, June 2009.

Griffin MR et al. NEJM 2013;396:155-163

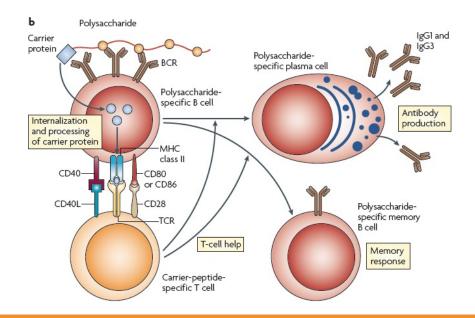
Birgit Weinberger


ESCAA, Belfast, September 2022

Streptococcus pneumoniae

more than 90 serotypes, based on polysaccharide capsule

polysaccharide vaccine


23-valent T-cell independent antigen mainly IgM response not immunogenic in infants

Pollard et al., Nat Rev Immunol, 2009

conjugate vaccine

13/15/20-valent after 7-and 10-valent vaccines for children T-cell dependent antigen antibody switch suitable for infants

Birgit Weinberger

ESCAA, Belfast, September 2022

Vaccination against *S. pneumoniae*

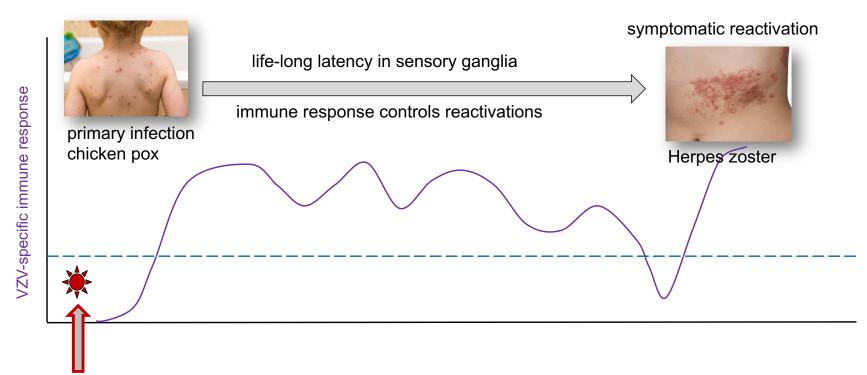
Serotyp	1	2	3	4	5	6A	6B	7F	8	9N	9V	10A	11A	12F	14	15B	17F	18C	19A	19F	20	22F	23F	33F
PPV-23																								
PCV-7																								
PCV-10																								
PCV-13																								
PCV-15																								
PCV-20																								

Polysaccharide vaccine PPV-23 (Pneumovax, MSD) Conjugate vaccines PCV-13 (Prevenar, Pfizer) PCV-15 (Vaxneuvance, MSD) PCV-20 (Apexxnar, Pfizer)

Heterogenous vaccination recommendations in Europe:

- only PPV-23
- only PCV-13
- PCV-13 followed by PPV-23
- usually only once, some countries recommend repetition after 5-6 years for patients at risk

Efficacy Endpoint	Vaccine	Group	VE (%)	95.2% Cl	p-value
	PCV-13 (n=42,240)	Placebo (n=42,256)			
Vaccine-type pneumonia	49	90	45.56	(21.82,62.49)	0.0006
Vaccine-type invasive disease	7	28	75.00	(41.43, 90.78)	0.0005


Bonten MJ et al. NEJM 2015

Varizella-Zoster virus

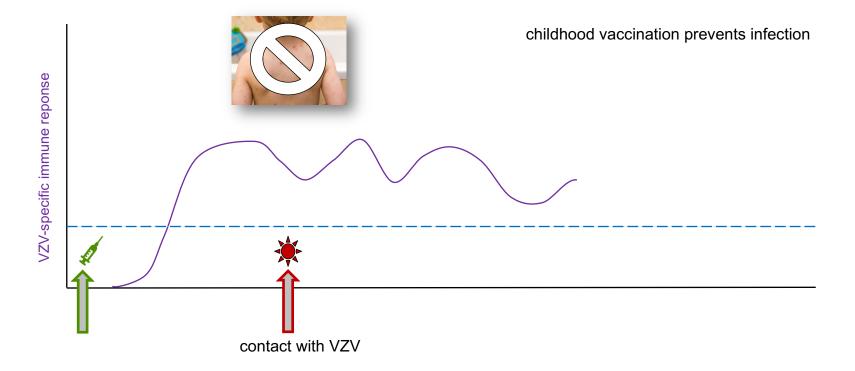
Herpesvirus primary infection: chickenpox latency in sensory ganglia reactivation: herpes zoster (shingles)

Herpes zoster

1.7 Mio cases per year in Europe post-herpetic neuralgia (PHN)long-lasting pain, inefficient therapysignificant limitations in daily-life activities

Photos: Shutterstock Figure freely adapted from Hope-Simpson, 1965

Varizella-Zoster virus


Herpesvirus primary infection: chickenpox latency in sensory ganglia reactivation: herpes zoster (shingles)

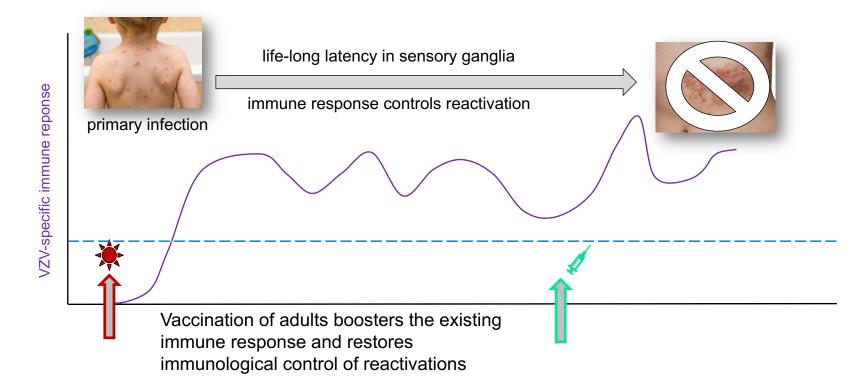
Herpes zoster

1.7 Mio cases per year in Europe post-herpetic neuralgia (PHN)long-lasting pain, inefficient therapysignificant limitations in daily-life activities

Vaccine

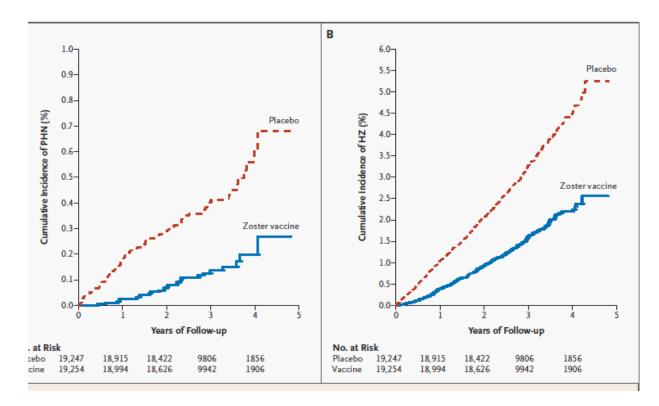
childhood vaccine prevents chickenpox

Varizella-Zoster virus


Herpesvirus primary infection: chickenpox latency in sensory ganglia reactivation: herpes zoster (shingles)

Herpes zoster

1.7 Mio cases per year in Europe post-herpetic neuralgia (PHN)long-lasting pain, inefficient therapysignificant limitations in daily-life activities

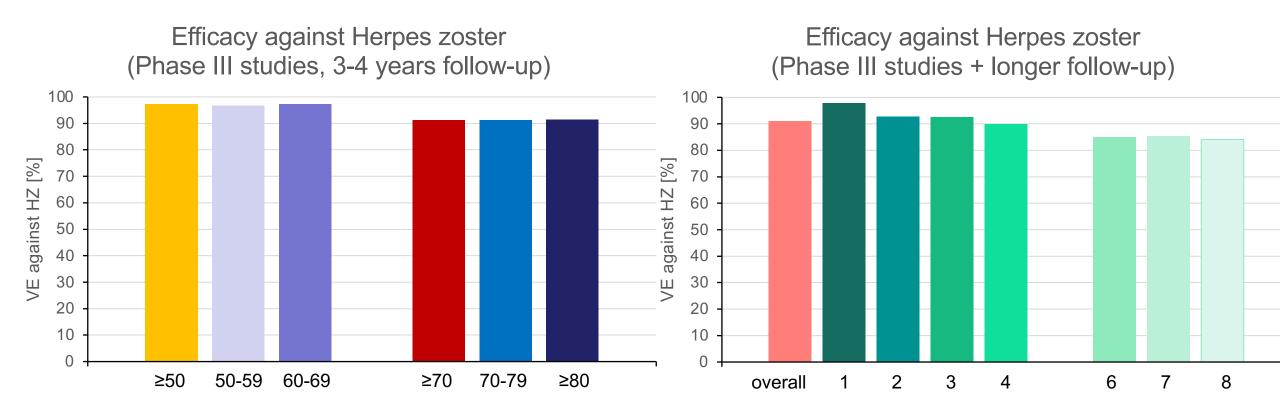

Vaccine

childhood vaccine prevents chickenpox vaccination of adults boosters the existing immune response and restores immunological control of reactivations

Photos: Shutterstock Figure freely adapted from Hope-Simpson, 1965

Live-attenuated vaccine; single dose

Efficacy for HZ	
60-69 years	63.9%
>70 years	37.6%
year 1	62.0%
year 5	43.1%
year 10	14.1%

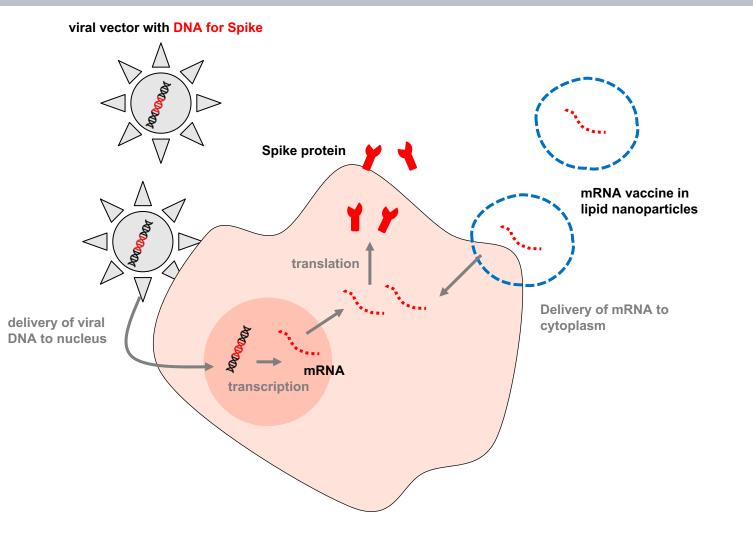

Overall efficacy for herpes zoster**51.3%**Overall efficacy for PHN**66.5%**

Oxman, *NEJM*, 2005 Morrison, *Clin Inf Dis*, 2015 Levine, *J Inf Dis*, 2016 Weinberg, *J Inf Dis*, 2018

ESCAA, Belfast, September 2022

Birgit Weinberger

50µg recombinant glycoprotein E plus adjvuvant AS01 $_{\beta}$ (MPL, QS21, liposomes) 2 doses, 8 weeks apart



very high efficacy \rightarrow even in the oldest age groups

very high efficacy \rightarrow even after 8 years

data from: Lal, *NEJM*, 2015 Cunningham, *NEJM*, 2016 Boutry, CID, 2021

Licensed vaccines against COVID-19 (Europe)

viral vactors

non-replicating "harmless" virus, carrying genetic information of SARS-CoV-2 spike protein Chimp-Adenovirus: AstraZeneca Adenovirus 26: Johnson&Johnson/ Janssen

mRNA vaccines

mRNA in Lipid-Nanopartikeln BioNTech/Pfizer, Moderna

Protein vaccine

Spike protein + adjuvant (Matrix M) Novavax

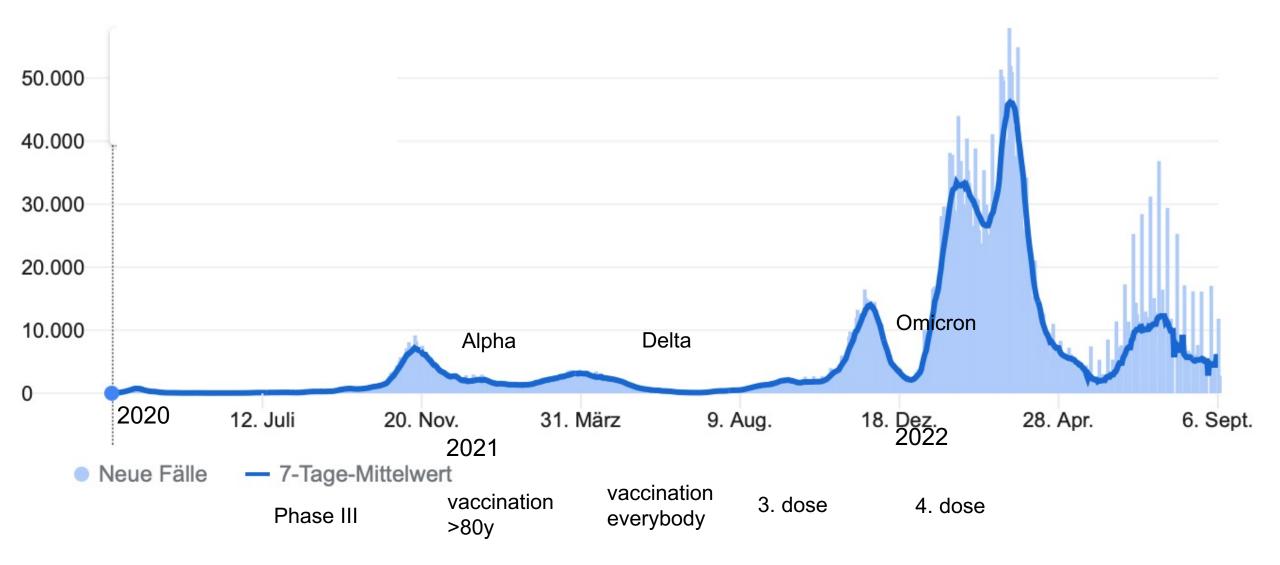
Whole virus inactivated vaccine

inactivated virus + adjuvant (Alum+CpG) only <50 years! Valneva

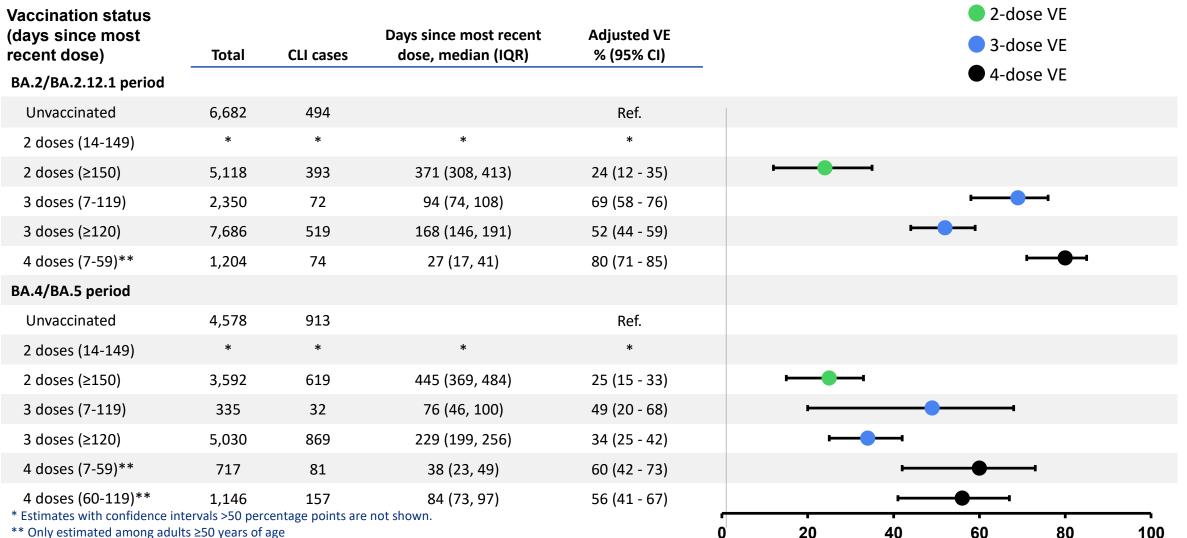
Phase 3 study, BioNTech/Pfizer

clinical efficacy against symptomatic infection (up to 2 months after vaccination)

Efficacy End-Point Subgroup		T162b2 =18,198)	F (N	Vaccine Efficacy, % (95% CI)†	
	No. of Cases	Surveillance Time (No. at Risk)*	No. of Cases	Surveillance Time (No. at Risk)*	
Overall	8	2.214 (17,411)	162	2.222 (17,511)	95.0 (90.0–97.9)
Age group					
16 to 55 yr	5	1.234 (9,897)	114	1.239 (9,955)	95.6 (89.4–98.6)
>55 yr	3	0.980 (7,500)	48	0.983 (7,543)	93.7 (80.6–98.8)
≥65 yr	1	0.508 (3,848)	19	0.511 (3,880)	94.7 (66.7–99.9)
≥75 yr	0	0.102 (774)	5 🔪	0.106 (785)	100.0 (-13.1-100.0)


Polack et al., NEJM, 2020

	Vaccine effectiveness*						
	Age	Age	Age				
	≥65 years	≥75 years	≥85 years				
SARS-CoV-2 infection†	94·8%	95·1%	94·1%				
	(93·9–95·5)	(93·9–96·0)	(91·9–95·7)				
Asymptomatic	88·5%	87·5%	83·2%				
SARS-CoV-2 infection	(86·4–90·3)	(84·2–90·1)	(76·3-88·1)				
Symptomatic COVID-19	96·4%	96·7%	96·6%				
	(95·9–97·0)	(95·9–97·4)	(95·2–97·6)				
COVID-19-related hospitalisation	96·8%	97·0%	96·9%				
	(96·2–97·3)	(96·2–97·7)	(95·5–97·9)				
Severe or critical COVID-	97·3%	97·6%	97·4%				
19-related hospitalisation	(96·8–97·8)	(96·8–98·1)	(95·9 –98·3)				
COVID-19-related death	96·9%	97·1%	97·0%				
	(96·0–97·6)	(96·0–97·9)	(94·9–98·3)				


Israel: April 03 2021 >7 days after 2nd dose of BioNTech/Pfizer

Haas et al., Lancet, 2021

... a lot of change is happening

VISION: mRNA VE for hospitalizations among immunocompetent adults ≥18 years by number of doses and time since last dose receipt, late-Mar-late-Jul 2022

** Only estimated among adults ≥50 years of age

BA.2/BA.2.12.1 estimates: Link-Gelles et al. MMWR: https://www.cdc.gov/mmwr/volumes/71/wr/mm7129e1.htm

Vaccine Effectiveness (%) BA.4/BA.5 estimates: CDC, preliminary unpublished data. Individuals with prior infections excluded. Adjusted for calendar time, geographic region, age, sex, race, ethnicity, local virus circulation, respiratory or nonrespiratory underlying medical conditions, and propensity to be vaccinated.

Birgit Weinberger

BioNTech/Pfizer and Moderna developed mRNA vaccines adapted to Omicron

 \rightarrow first studies (immunogenicity, safety) with Omicron BA.1

 \rightarrow Omicron only or bivalent (ancestral mRNA + Omicron)

→ decision was made for bivalent formulation → but in the meantime BA.4/5 showed up....

USA: Licensure of bivalent vaccines (ancestral + BA.4/5) \rightarrow used as booster (3rd and 4th dose)

Europe: Licensure of bivalent vaccines (ancestral + BA.4/5) \rightarrow early September \rightarrow distribution has started \rightarrow used as booster (3rd and 4th dose)

 \rightarrow Licensure of bivalent vaccines (ancestral + BA.4/5) \rightarrow middle of September

Summary

- Age-related changes occur in all parts of the immune system
- Higher incidence and severity of infections
- Reduced immunogenicity and efficacy of many, but not all vaccines
- Vaccines specifically recommended for older adults
 - Influenza \rightarrow high-dose and adjuvanted vaccines
 - S. pneumoniae \rightarrow polysaccharide and conjugate vaccines
 - Herpes zoster \rightarrow adjuvanted subunit vaccine
- Vaccines for all adults are also relevant in seniors
 - SARS-CoV-2
 - regular booster vaccinations (tetanus, diphtheria, pertussis)
 - Hepatitis B, travel vaccines...

- Heterogeneity of populations: healthy, frail, co-morbidities, medications, communitydwelling, long-term care...
- Higher person-to-person variability
- Chronolgical age vs. biological age vs. immunological age?
- Impact of latent CMV-infection?
- Things we know from other age groups might not apply Example: correlation of ELISA and OPA titers for pneumococcal polysaccharicdespecific antibodies in children, but not in older adults
- Impact of "antigenic history" → previous vaccination and/or natural exposure

